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ABSTRACT
In the standard formulation of the smoothed particle hydrodynamics (SPH), it is assumed that the

local density distribution is differentiable. This assumption is used to derive the spatial derivatives of
other quantities. However, this assumption breaks down at the contact discontinuity, which appears
often in simulations of astronomical objects. At the contact discontinuity, the density of the low-
density side is overestimated while that of the high-density side is underestimated. As a result, the
pressure of the low (high) density side is over (under) estimated. Thus, unphysical repulsive force
appears at the contact discontinuity, resulting in the effective surface tension. This effective surface
tension suppresses instabilities such as the Kelvin-Helmholtz and Rayleigh-Taylor instabilities. In this
paper, we present a new formulation of SPH, which does not require the differentiability of density
and thus can handle contact discontinuity without numerical problems. The results of standard tests
such as the shock tube, Kelvin-Helmholtz and Rayleigh-Taylor instabilities, and the blob tests are all
very favorable to our new formulation. We conclude that our new formulation solved practically all
known difficulties of the standard SPH, without introducing additional numerical diffusion or breaking
the exact force symmetry or energy conservation.
Subject headings: galaxies:evolution—galaxies:ISM—methods:numerical

1. INTRODUCTION

Smoothed particle hydrodynamics (SPH) is a lagrange
scheme to solve the evolution of fluid using particles. It
was originally introduced by Lucy (1977) and Gingold &
Monaghan (1977) and has been widely used in the field of
the computational astrophysics (Monaghan 1992, 2005;
Rosswog 2009; Springel 2010b). It is becoming popular
in hydrodynamical simulations in engineering (e.g., Liu
& Liu 2003).

Recently, Agertz et al. (2007) reported the results of
comparison of SPH and Euler schemes (grid methods).
Their main result is that SPH suppresses the Kelvin-
Helmholtz instability. This has been pointed out by
Okamoto et al. (2003). The reason of this problem is
that in the standard SPH the smoothed density is used
to obtain other physical quantities. The estimated den-
sity of particles near the contact discontinuity has O(1)
error, irrespective of the numerical resolution. This large
error causes similarly large error in the pressure (see §2).
Agertz et al. (2007) noted that there were fundamental
differences between SPH and grid methods.

There have been several proposals to improve SPH so
that it can deal with the contact discontinuity. Price
(2008) discussed the artificial thermal conductivity which
was originally introduced by Monaghan (1997). The mo-
tivation of the use of the artificial conductivity is that ev-
ery physical quantity should be smooth in the standard
SPH. The artificial conductivity eliminates the discon-
tinuity in the thermal energy. As a result, the density
near the contact discontinuity becomes smooth and the
pressure also becomes smooth with this artificial con-
ductivity. Thus, the Kelvin-Helmholtz instability takes
place. At the first sight, this artificial conductivity looks
similar to the artificial viscosity which is necessary to
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capture shocks in SPH. However, there are two funda-
mental differences. First, the artificial viscosity is used
to generate the physical dissipation associated with the
shock, while the artificial conductivity adds physically
non-existent dissipation. One needs to fine-tune the con-
ductivity coefficient to prevent unnecessary smoothing.
This means that the conductivity must be non-linear.
Second, if there is a jump in the chemical composition,
thermal conductivity is not enough. However, whether
the use of artificial chemical diffusion is justified or not is
an open question. Read et al. (2010) suggested that the
Kelvin-Helmholtz instability took place when the num-
ber of neighbors was sufficiently large and the momen-
tum equation of the Ritchie & Thomas (2001) was used.
Abel (2011) used the relative pressure instead of the
absolute values of pressures in the equation of motion.
This formulation improves the treatment of the Kelvin-
Helmholtz instability, but breaks the Newton’s third law.
Garćıa-Senz et al. (2012) considered the use of the inte-
gral form of the first derivative, which also improved the
treatment of hydrodynamical instabilities.

In this paper, we describe a new formulation of SPH
which does not use the smoothed mass density. Instead,
we use the smoothed internal energy density to obtain
other quantities and their spatial derivatives. The rea-
son why we adopt the energy density instead of the mass
density is that it is the fundamental quantity of the hy-
drodynamics. In our formulation, the pressure is calcu-
lated without using the mass density. Thus, unphysical
jumps of pressure at the contact discontinuity disappear.
Our equation of motion is similar to that of Ritchie &
Thomas (2001), although the basis of deviation is com-
pletely different. Results of various tests indicate that
our formulation is highly advantageous.

The structure of this paper is as follows. In §2, we
analyze the problem of standard SPH at discontinuities.
Our new formulation of SPH is described in §3 and the
comparison of the results of test calculations with the
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new formulation and standard formulation are shown in
§4. Summary and discussion are presented in §5.

2. STANDARD SPH AND ITS DIFFICULTY AROUND
DISCONTINUITIES

In SPH, the fluid is expressed by discrete particles and
physical quantities are approximated by kernel interpo-
lation. In the standard formulation of SPH, the local
density is first calculated, and then the rests of neces-
sary physical quantities, such as the pressure gradient
and the time derivative of the internal energy, are calcu-
lated. Thus, the accuracy of the solution depends on the
accuracy of the density estimate. In this section, we re-
examine the derivation of the equation of motion in SPH
to understand its problem.

A physical quantity f at position r can be expressed
as follows:

f(r) =
∫

f(r′)δ(|r − r′|)dr′. (1)

A smoothed value of f at position r, 〈f〉(r), is given by
the convolution of f and a kernel function W (r − r′, h):

〈f〉(r) =
∫

f(r′)W (|r − r′|, h)dr′, (2)

where h is the size of the kernel function and corresponds
to the spatial resolution. This smoothing is the base of
SPH. Here, the kernel function must satisfy the following
three conditions: (1) it becomes the delta function in the
limit of h → 0, (2) it is normalized as unity, and (3) it is a
function with compact support. A cubic spline function
is most widely used as the kernel function:

W (|r−r′|, h) =
σ

hD


(
1 − 3

2s2 + 3
4s3
)

0 ≤ s < 1,
1
4 (2 − s)3 1 ≤ s < 2,

0 2 ≤ s,

(3)

where s = |r − r′|/h, D is the dimension, and the nor-
malized factors σ in one, two, and three dimensions are
2/3, 10/7π, and 1/π, respectively. We first derive the
equations of motion and energy with the constant ker-
nel size, and then we generalized them to the individual
kernel size.

The first derivative of the smoothed f is given by

〈∇f〉(r) =
∫

∇f(r′)W (|r − r′|, h)dr′. (4)

By making use of the partial integral and the fact that
the kernel function has compact support, Eq. 4 becomes

〈∇f〉(r) =
∫

f(r′)∇W (|r − r′|, h)dr′. (5)

We need to discretize Eq. 2 to evaluate the physical
quantities at positions of particles. To convert integral
into summation, a volume element dr′ is replaced by
mj/ρj , where mj and ρj are the mass and density of the
particle j. In addition, positions of particles i and j are
expressed by ri and rj and f(r′) is replaced by fj . Thus,
the value of f at the position of particle i is

〈f〉(ri) '
∑

j

mj
fj

ρj
W (rij , h), (6)

where rij = |rij | and rij = ri − rj . Hereafter, we call
the SPH formulation with this type of discretization as

the standard SPH. At this point, we do not know ρj . By
substituting ρ into f , we obtain

ρi '
∑

j

mjW (rij , h), (7)

where ρi ≡ 〈ρ〉(ri) is the smoothed density at the posi-
tion of particle i. Note that the right-hand side of Eq. 7
includes no unknown quantities. Thus, densities should
be calculated first in the standard SPH.

The equation of motion is

d2r

dt2
= −∇P

ρ
, (8)

where t is time and P is pressure. The SPH approxima-
tion of Eq. 8 is given by

d2ri

dt2
' −

∑
j

mj

(
Pi

ρ2
i

+
Pj

ρ2
j

)
∇W (rij , h). (9)

This form satisfies the Newton’s third law. We used the
following relation to obtain Eq. 9:

∇P

ρ
= ∇

(
P

ρ

)
− P

ρ2
∇ρ. (10)

In order for Eq. 9 to be meaningful, ρ must be differen-
tiable, since its derivative is used in Eq. 10.

Finally, we derive the energy equation in the standard
SPH. The energy equation is

du

dt
= −P

ρ
∇ · v, (11)

where u is the internal energy and v is the velocity. To
obtain the SPH formulation of the energy equation, we
need the SPH expression of ∇ · v. We use

∇(ρv) = ∇ρv + ρ∇ · v. (12)

The SPH formulation of ∇ · v is given by

ρi∇ · vi '
∑

j

mjvj · ∇W (rij , h) − vi ·
∑

j

mj∇W (rij , h)

=−
∑

j

mjvij · ∇W (rij , h), (13)

where vij = vi − vj . Therefore, the energy equation in
the standard SPH is

dui

dt
'
∑

mj
Pi

ρ2
i

vij · ∇W (rij , h). (14)

Equations 7, 9, and 14 close with the equation of state
(EOS),

P = (γ − 1)ρu, (15)

where γ is the specific heat ratio. There is no need to
solve the continuity equation in SPH since it is satisfied
automatically.

When we use the variable and individual kernel size,
above equations should be modified slightly. First, the
density evaluation equation is rewritten as

ρi '
∑

j

mjW (rij , hi). (16)

This is the so-called gather interpretation of the summa-
tion (Hernquist & Katz 1989). In equations of motion
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and energy, the gather-and-scatter interpretation is used
(Hernquist & Katz 1989). Thus, Eqs. 9 and 14 become

d2ri

dt2
' −

∑
j

mj

(
Pi

ρ2
i

+
Pj

ρ2
j

)
∇W̃ij , (17)

and
dui

dt
'
∑

j

mj
Pi

ρ2
i

vij · ∇W̃ij , (18)

where ∇W (rij , hi) is replaced by ∇W̃ij =
0.5[∇W (rij , hi) + ∇W (rij , hj)] so that the equa-
tion of motion can satisfy the Newton’s third law. It is
also possible to use ∇W̃ij = ∇W [rij , 0.5(hi + hj)]. We
adopt the first form throughout this paper.

In the derivation of the standard SPH discretization,
the differentiability of ρ is used for both the equation of
motion and the energy equation. However, ρ is discon-
tinuous at the contact discontinuity. In the following,
we illustrate the consequence of the discontinuity of the
density.

In Figure 1, we show the values of density and pres-
sure around a contact discontinuity evaluated by the
standard formulation of SPH. Equation 16 is used and
P = (γ − 1)ρu. To set up this contact discontinuity, we
place particles on a regular grid in three dimensions and
set ρ = 1 for x < 0.5 and ρ = 0.125 for x > 0.5. We used
equal-mass particles in the first two configurations. In
these two setups, positions of particles in the less dense
region is determined by taking the center of mass of the
eight particles in the cube of the particle separation. In
the last configuration, we adopted the equal separation
for both regions, which means that the mass of parti-
cles in the less dense region is 1/8 of that of particles
in the dense region. The internal energy was set to 1.5
(x < 0.5) and 12 (x > 0.5), and the specific heat ratio
was 5/3. Velocities of particles were set to zero. The
kernel size is determined to keep the neighbor number,
Nnb, to the range 32 ± 2, in the first and the last tests.
In the second test a constant h fixed to twice the particle
separation in the less dense region is used.

The top panels show the distribution of particles. The
panels in the second row show the SPH density. Though
the initial setup has the discontinuity at x = 0.5, it is
smoothed by the kernel. As a result, SPH density of
particles next to the discontinuity has very large errors,
as shown in the 3rd row. This large error in the density
causes similarly large error in the pressure (4th row).
The pressure of particles at the end of the low-density
region is grossly overestimated, while that at the end of
the high-density region is underestimated only modestly.
This non-symmetric error in the pressure is the origin of
the repulsive force at the contact discontinuity, as has
been pointed out in previous studies (e.g., Ritchie &
Thomas 2001; Okamoto et al. 2003; Agertz et al. 2007).
This large error in the pressure also exists in both of the
constant kernel size case (the middle column) and the
equal-separation case (the right column).

Consider the following density and pressure distribu-
tion:

ρ =
{

ρ1 x ≥ 0,

ρ2 x < 0,
(19)

and
P = P0. (20)

Obviously, we have

〈ρ〉(x) → ρ1 + ρ2

2
, for x → 0, (21)

and therefore,

lim
x→+0

〈P 〉(x) =
ρ1 + ρ2

2ρ1
P0, (22)

lim
x→−0

〈P 〉(x) =
ρ1 + ρ2

2ρ2
P0. (23)

Thus, if ρ1 � ρ2, the error of the pressure can be ar-
bitrarily large. Note that the existence of this error
does not imply the inconsistency of SPH. In this limit
of h → 0, the volume of the regime affected by this er-
ror approaches to zero, which means the original differ-
ential equation is restored almost everywhere. In other
words, SPH satisfies the weak form of the original equa-
tion. However, it means the convergence is slow and first
order.

One might think that this error is caused by an inade-
quate initial thermal energy distribution. However, it is
not the case. Even if we initialize the internal energy of
particles near the contact discontinuity so that pressure
is smooth, the particle distribution changes and discon-
tinuity is regenerated. We, thus, need continuous adjust-
ment to suppress the pressure error throughout the time
integration. Price’s artificial conductivity (Price 2008)
provides such a continuous adjustment. Though the ar-
tificial conductivity works beautifully in test calculations
for the Kelvin-Helmholtz instability, whether its use in
actual astrophysical simulation is justified or not is a bit
questionable. First, in the case of the discontinuity of
chemical composition, not only the jump in the internal
energy but also that in the chemical composition should
be smoothed but that is clearly not adequate. Second,
the artificial heat conduction can significantly enhance
the thermal relaxation of the system, which is again un-
wanted.

3. A DENSITY INDEPENDENT FORMULATION OF SPH

In §2, we have seen that the standard SPH breaks down
at the contact discontinuity because the continuity and
differentiability of the density is necessary to guarantee
the convergence of SPH approximation. The basic rea-
son for this problem is the use of mj/ρj as the volume
element. Thus, if we use something else as the volume
element, we might be able to avoid this difficulty alto-
gether.

3.1. Concept
Here, we propose an alternative formulation of SPH in

which we discretize Eq. 2 using the EOS of fluid, not the
mass density. The new volume element is

dr′ =
(γ − 1)mjuj

Pj
. (24)

Substituting Eq. 24 into Eq. 2 and using the gather
summation, we obtain a new SPH approximation of
smoothed f :

〈f〉(ri)'
∑

j

(γ − 1)
mjujfj

Pj
W (rij , hi), (25)

=
∑

j

(γ − 1)
Ujfj

Pj
W (rij , hi), (26)
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Fig. 1.— Density and pressure fields evaluated with the standard SPH and our new SPH around the contact discontinuity with the
density ratio of 1 : 8. Equal mass particles are used for the first and second configurations (the left and middle columns). The positions
of the less dense region is determined by taking the center of mass of the eight particles in the cube of the particle separation. The equal
separation is used in the last configuration (the right column). In this configuration, the mass of particles in the less dense region is 1/8 of
that of particles in the dense region. For the left and right columns, the constant neighbor number, 32 ± 2, is used. In the middle column,
a constant kernel size of 0.03125 is used. The top row shows the distribution of particles projected on the x − y plane. The second row
shows the density of each SPH particle evaluated with Eq. 16. The third row shows the density contrast between the evaluated density
and true one. The fourth row shows corresponding pressure. In the bottom row, the pressure of each particle calculated with our new SPH
is shown.
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where Ui = miui is the internal energy of particle i. By
substituting f with the energy density, q ≡ ρu, we have

qi '
∑

j

UjW (rij , hi). (27)

where we used qi ≡ 〈q〉(r). The gradient of 〈f〉 is given
by

〈∇f〉(ri) '
∑

j

Uj
fj

qj
∇W (rij , hi). (28)

We adopt Eqs. 26 and 27 as the basis of our new for-
mulation. We derive the equations of motion and energy
from this basis. We note that our new SPH is also Galilei
invariant.

One might think that the use of U for the calculation
of the volume element would cause some inconsistency,
since U is not a conserved quantity. The mass of a par-
ticle is constant, and thus looks safer. In the following,
we show that we can construct a consistent set of equa-
tions using U , and that it has many advantages over the
standard SPH and that it retains important characteris-
tics such as force symmetry and energy conservation. We
first derive the energy equation and then equation of mo-
tion. We then discuss the formulation for the estimate
of the density and the implementation of the artificial
viscosity.

3.2. Energy Equation
We need an expression of ∇ · v to derive the energy

equation. We start with

∇(qv) = ∇qv + q∇ · v, (29)

which is obtained by replacing ρ in Eq. 12 by q. By
applying Eq. 28 to Eq 29, we obtain an analogy of Eq.
13:

qi∇ · vi '
∑

j

Ujvj · ∇W (rij , hi) − vi ·
∑

j

Uj∇W (rij , hi)

=−
∑

j

Ujvij · ∇W (rij , hi). (30)

The energy equation is then given by

dui

dt
'
∑

j

Uj
Pi

ρiqi
vij · ∇W̃ij . (31)

Equation 31 contains ρi since u is the energy per unit
mass. The equation for Ui is obtained by multiplying
Eq. 31 by mi:

dUi

dt
' mi

ρi

∑
j

UjPi

qi
vij · ∇W̃ij . (32)

Here, mi/ρi is the volume associated with particle i
which can be replaced by Ui/qi. Thus, we have

dUi

dt
' (γ − 1)

∑
j

UiUj

qi
vij · ∇W̃ij , (33)

where we used P = (γ − 1)q.

3.3. Equation of Motion
From the energy equation, Eq. 33, we derive the equa-

tion of motion. The change in the internal energy of
particles i and j due to their relative motion is

dUi

dt
+

dUj

dt
= (γ − 1)UiUj

(
1
qi

+
1
qj

)
vij · ∇W̃ij . (34)

This change is the same as the change of the kinetic
energy of particles with an opposite sign. Thus, we have

mimj

mi + mj
vij ·

(
dvi

dt
− dvj

dt

)
= −

(
dUi

dt
+

dUj

dt

)
. (35)

Substituting Eq. 34 into Eq. 35, we obtain(
dvi

dt
− dvj

dt

)
= −(γ−1)

mi + mj

mimj
UiUj

(
1
qi

+
1
qj

)
∇W̃ij .

(36)
Since the motion of the center of mass of two particles is
unchanged by the interaction of two particle, we have

d

dt
(mivi + mjvj) = 0. (37)

Thus, we have

mi
dvi

dt
= −(γ − 1)UiUj

(
1
qi

+
1
qj

)
∇W̃ij , (38)

as the contribution of particle j to the equation of motion
of particle i.

The equation of motion for particle i is obtained by
taking summation over neighbor particles:

mi
dvi

dt
' −(γ − 1)

∑
j

UiUj

(
1
qi

+
1
qj

)
∇W̃ij . (39)

The right-hand side of Eq. 39 contains only the energy
U and energy density q. Thus, as far as q is smooth, Eq.
39 is likely to be well-behaved. The equation of motion
of the standard SPH (Eq. 9) requires both P and ρ
are smooth. Thus, in our formulation, there is nothing
special about the contact discontinuity. We can therefore
expect that the treatment of the contact discontinuity is
improved. We will see this in §3.5.

Note that Eq. 39 is mathematically equivalent to
the equation of motion obtained by Ritchie & Thomas
(2001), while the deviation is completely different.
Ritchie & Thomas (2001) started from Eq. 27 and den-
sity estimate ρ = mq/U , but still tried to use standard
SPH estimate of Eq. 6. In order to eliminate ρ from
equation of motion, they used the following formal rela-
tionship

∇P

ρ
=

∇P

ρ
+

P

ρ
∇1, (40)

and formal identity

∇1 =
∑

j

mj
1
ρj

∇W (rij , h) ' 0. (41)

Thus, their deviation was a heuristic modification of the
standard SPH and they did not employ the volume el-
ement U/q explicitly. We have shown that by choosing
U/q as the volume element, we can derive a consistent
set of SPH equations naturally.
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3.4. Artificial Viscosity
To deal with shocks, the standard SPH needs an ar-

tificial viscosity term. Our new formulation also needs
an artificial viscosity term. We utilize artificial viscos-
ity terms which are widely used in simulations with the
standard SPH.

The viscosity term for the equation of motion is

mi
d2ri

dt2
= −mi

∑
j

mjΠij∇W̃ij , (42)

and the corresponding form of it for the energy equation
is

dUi

dt
=

mi

2

∑
j

mjΠijvij · ∇W̃ij , (43)

where Πij is the function of the strength of the artificial
viscosity.

There are two types of artificial viscosity term, Πij ,
which are commonly used. The most commonly used
one (Lattanzio et al. 1985) is

Πij =

{
−αcijµij+βµ2

ij

ρij
vij · rij < 0,

0 vij · rij ≥ 0,
(44)

where α and β are the control parameters for the strength
of the artificial viscosity, cij is the arithmetic average of
the sound speeds of particles i and j, ρij = 0.5(ρi + ρj),
and

µij =
hijvij · rij

r2
ij + εh2

ij

. (45)

The constant ε is introduced to avoid the divergence and
its fiducial value is ∼ 0.01.

The other one is proposed by Monaghan (1997) from
the analogy of the Riemann solver:

Πij =

{
−α

2

vsig
ij wij

ρij
vij · rij < 0,

0 vij · rij ≥ 0,
(46)

where vsig
ij = ci + cj − 3wij and wij = vij · rij/rij .

Since we have the density estimate ρ = q/u, we have

ρij =
1
2

(
qi

ui
+

qj

uj

)
. (47)

However, this modification of ρij leads to unstable behav-
ior under strong shocks. It seems to be safe to use the
smoothed densities of particles i and j evaluated using
Eq. 7. A consistent derivation of the artificial viscosity
term in our scheme will be investigated in a forthcoming
paper.

We use the standard Balsara switch (Balsara 1995) to
suppress the shear viscosity. It is given by

Fi =
|∇ · vi|

|∇ · vi| + |∇ × vi| + εbci/hi
, (48)

and Πij,Balsara = 0.5(Fi+Fj)Πij . Here εb is a small value
(typically 10−4). The rotation of velocity in the standard
SPH is found in literature (e.g., Monaghan 1992). The
rotation of velocity in our SPH is calculated as follows:

∇× vi '
1
qi

∑
j

Ujvij ×∇W (rij , hi). (49)

3.5. Pressure in Contact Discontinuities
The pressure around the contact discontinuity calcu-

lated with our SPH equation is shown in the bottom
panels of figure 1. In the case of the equal-mass parti-
cle and the fixed neighbor number (the left panel), we
can see that the jump of the pressure at the contact dis-
continuity in our SPH is much smaller than that in the
standard SPH. In the case of the constant kernel size (the
middle panel), the result of our SPH is almost flat, while
that of the standard SPH has a large error.

In these two equal-mass cases, pressure still has small
jumps at the contact discontinuity. The reason is that in
both cases the distribution of particles is asymmetric. In
the high-density region, the particle separation is smaller,
resulting in small integration error. As a result, small
error appears when the kernel contains the contribution
from both low- and high-density regions. In the case
of the equal separation of particles, there is no jump in
the pressure distribution at the contact discontinuity, as
shown in the rightmost panel.

4. NUMERICAL EXPERIMENTS

In this section, we show the results of several standard
tests for fluid schemes, for both the standard SPH and
our new SPH. In §4.1, we describe our numerical code
briefly. In §4.2, we show the results of the shock tube
tests. Then we show the evolution of system which is
initially in hydrostatic equilibrium in §4.3. In §4.4 and
§4.5, tests for two important fluid instabilities are carried
out. Finally, we show the results of the blob tests which
was first proposed by Agertz et al. (2007). In all tests,
our new SPH shows much better result compared to that
of the standard SPH.

4.1. Numerical Method
We used ASURA, a parallel N -body/SPH code, as a

framework of current numerical experiments. ASURA
adopts the leap-frog method for the time-integration. For
simplicity, we used the shared steps with variable time-
steps. The time-step is given by

dt = min
i

dti, (50)

where
dti = CCFL

2hi

maxj vsig
i

, (51)

and CCFL = 0.3.
For the standard SPH, we first evaluated the densi-

ties of particles using Eq. 16. Then, we calculated the
pressure gradient and the time-derivative of the internal
energy using Eqs. 17 and 18. In our new SPH, we eval-
uated q using Eq. 27 first, and then we calculated the
pressure gradient and the time derivative of the internal
energy using Eqs. 39 and 33. We used Eq. 46 as the arti-
ficial viscosity term in both cases and we adopted α = 1.
The Balsara switch was also applied. To avoid the tensile
instability, we used a first derivative of the kernel which
has a cuspy core (Thomas & Couchman 1992).

The kernel size of each particle is determine to keep the
number of neighbor particles within the range of 32± 2.
As an exception, in the one dimensional tests shown in
§4.2, the kernel size is evaluated by

h = η

(
m

ρ

)
, (52)
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or

h = η

(
mu

q

)
, (53)

where η = 1.2 for the Sod’s shock tube tests and η = 2.4
for the strong shock tube tests.

For brevity, we sometimes express the standard SPH
as SSPH.

4.2. Shock Tube Tests
The Sod shock tube (Sod 1978) is the most basic test

for numerical schemes for compressible fluid. This test
shows the shock capturing ability of schemes. In SPH,
not only the profile of the shock front but also the be-
havior of the contact discontinuity is important. Here,
we show the results of one- and three-dimensional shock
tube tests.

The setup is as follows. We prepared the periodic do-
main of −1 ≤ x < 1 for the one-dimensional tests and
−1 ≤ x < 1, −1/16 ≤ y < 1/16, and −1/16 ≤ z < 1/16
for the three dimensional tests. The initial condition is
given by {

ρ = 1, P = 1, v = 0, x < 0,

ρ = 0.25, P = 0.1795, v = 0, x ≥ 0.
(54)

To express this initial condition, we use equal-mass parti-
cles and place 800 and 200 particles in the left and right
domains, respectively, regularly in the one-dimensional
tests. In three dimensional tests, we place 40000 and
10000 particles in the left and right domains, respec-
tively, and a glass-like particle distribution was used. We
set γ = 1.4 and gave the internal energy to each particle
to ensure the given P .

In addition to the Sod shock tube, we performed a one-
dimensional strong shock test. The initial condition for
this test is given by{

ρ = 1, P = 1000, v = 0, x < 0,

ρ = 1, P = 0.01, v = 0, x ≥ 0.
(55)

We use 1000 equal-mass particles in the computational
domain of −1 ≤ x < 1 with the equal separation.

Figure 2 shows the results of the one-dimensional shock
tube tests with the standard SPH and our new SPH. The
density (upper row) and pressure (bottom row) of each
particle are plotted by circles. The red curves represent
the analytic solutions.

The standard SPH reproduce the analytic solution of
the density distribution well. The shock front is resolved
by ∼ 7 particles. The jump of the density at the contact
discontinuity is resolved by a similar number of particles.
The pressure shows large variations near the contact dis-
continuity, though it should be constant. Since Eq. 9 of
the standard SPH contains a large error near the con-
tact discontinuity, in order to achieve zero acceleration,
pressures of particles must have large variations. This
result is the same as the results of previous works with
the standard SPH (e.g., Springel 2005; Price 2008).

In our new SPH, unlike the case of the standard SPH,
the pressure around the contact discontinuity does not
show a large jump. The reason is simply that the energy
density is used instead of the mass density. The energy
density is constant at the contact discontinuity. The rea-
son why there is a small change in the pressure is that

Fig. 2.— The results of the one dimensional shock tube tests
for SSPH and our new SPH at t = 0.1. Density (upper row) and
pressure (bottom row) are shown. Circles indicate the physical
quantities of each SPH particle, while red curves represent the
analytic solutions. Insets in the pressure panels are the close-up
views around the contact discontinuity.

the particle separation changes at the contact disconti-
nuity. As we showed in figure 1, our new SPH still has
small error in the pressure, due to the finite number of
particles in the kernel. This error caused the change in
the pressure in figure 2.

The results of the three dimensional shock tube tests
for the standard SPH and our SPH are shown in figure
3. In this figure, the circles represent average values of
particles in bins with the width of the mean particle sep-
aration at the high density part. Again, we can see a
variation in the pressure around the contact discontinu-
ity in the case of the standard SPH. In the case of our
SPH, there is no such variation.

Figure 4 shows the results of the strong shock tube
tests for the standard SPH and our new SPH. The shock
front and the contact discontinuity in the density dis-
tribution is well reproduced in the both cases. In this
extreme test, both runs show jumps in the pressure dis-
tribution around the contact discontinuity. The absolute
value of the pressure jump in our SPH is much smaller
than that in the standard SPH. The jump found in the
pressure in our SPH is caused by the asymmetry in the
particle distribution (see §3.5). Overall, our SPH can
handle such a strong shock problem, even when a very
large pressure jump exists initially. This result is quite
reassuring. In our new SPH, it is assumed that pressure
is continuous, which is not a valid assumption at the
shock front. Thus, it could fail to capture very strong
shocks. The result shown in figure 4 shows that is not
the case and our new SPH can handle very strong shocks.

4.3. Hydrostatic Equilibrium Tests
As is shown in §2, in the standard SPH, particles feel

unphysical repulsive force at the interface of the contact
discontinuity. Therefore, in order to establish the hydro-
static equilibrium, the distance between particles at the
different sides of the contact discontinuity must become
larger than the “true” value. What is the consequence of
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Fig. 3.— The results of the three dimensional shock tube tests
for SSPH and our new SPH at t = 0.1. Density (upper row) and
pressure (bottom row) are shown. Circles indicate the averaged
physical quantities of SPH particles, while red curves represent the
analytic solutions.

Fig. 4.— The same as figure 2, but for the strong shock tube
tests at t = 0.012.

this repulsive force? Here, we show the result of a sim-
ple test which helps us to understand the problem of the
unphysical repulsive force. Similar test has been used in
Heß & Springel (2010).

We follow the evolution of two fluids with different val-
ues of density, but with the same pressure. We performed
two-dimensional tests. The computational domain is a
square of the unit size, 0 ≤ x < 1 and 0 ≤ y < 1, with a

periodic boundary condition. Initial conditions are

ρ=
{

4 0.25 ≤ x ≤ 0.75 and 0.25 ≤ y ≤ 0.75,

1 otherwise,
(56)

P =2.5, (57)
γ =5/3. (58)

We tried two different realizations. In the first one, the
particle mass is the same for the entire computational
region. Thus, the inter-particle distance is smaller in the
high density region. In the second one, particles in the
high density region is four times more massive than par-
ticles in the low-density region. In both cases, particles
are initially in a regular grid. For the equal-mass case,
the number of particles in the dense region is 4096 and
that in the ambient is 3072. For the equal-separation
cases, those are 1024 and 3072, respectively. Initial ve-
locities of particles were set to zero. Since the system is
initially in the hydrostatic equilibrium, particles should
not move, except for small local adjustments.

Figure 5 shows the time evolution up to t = 8. There
is a clear difference between the result of the standard
SPH and that of our SPH. With the standard SPH, the
high-density region, which initially has a square shape,
quickly becomes rounder and almost completely circular
by t = 8. We can understand this unphysical round-
ing as follows. As we stated in §2 and §3.5, unphysical
repulsive force between particles operates at the contact
discontinuity. We can see the effect of this force in the de-
velopment of the gap of the distribution of particles near
the boundary of two fluids. Because of this gap, the bulk
of the system is slightly compressed. The system seeks to
achieve the energy minimum, by minimizing the surface
area of the contact discontinuity. Thus, the high-density
region evolves to a circular shape, which minimizes the
length of the boundary. In other words, the repulsive
force effectively adds the “surface tension”.

Our new SPH gives a far better solution, as we can
see in the lower two rows of figure 5. The overall square
shape remains there till the end of the simulation in the
equal-mass case. The result of the unequal-mass case is
even better. The equation of motion of our SPH elimi-
nates the unphysical surface tension completely.

Figure 6 shows the final state of the two-fluid system
with the density contrast of 64. Our SPH handles the
system without any problem (right panel). On the other
hand, in the calculation with the standard SPH, a wide
and empty ring structure is formed between two fluids.

4.4. Kelvin-Helmholtz Instability Tests
After the work by Agertz et al. (2007) which demon-

strated clearly that the standard SPH cannot deal with
the Kelvin-Helmholtz instability correctly, many re-
searchers proposed modifications of SPH to solve the
problem (see §1). In this section, we investigate how
our new SPH handles the Kelvin-Helmholtz instability.

We prepared a two-dimensional computational do-
main, 0 ≤ x < 1 and 0 ≤ y < 1. The periodic boundary
condition was used. The density is

ρ =
{

1(≡ ρl) 0 ≤ y < 0.25, 0.75 ≤ y < 1,

2(≡ ρh) 0.25 ≤ y < 0.75.
(59)

We used equal-mass particles. The numbers of particles
in the high and low dense regions are 131072 and 65522,
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Fig. 5.— Snapshots of a two-fluid system at t = 0.1, 0.3, 0.5, 1 and 8. The red and blue points indicate the positions of particles with
ρ = 4 and ρ = 1, respectively. The upper two rows are the results of SSPH, while the lower two rows are those of our SPH. The first and
third rows show the results of the equal-mass cases, whereas the second and fourth rows show those of the equal separation and unequal
mass cases.

Fig. 6.— The final state (t = 8) of a two fluid system with the
density contrast of 64. The red and blue points are the positions of
particles with ρ = 64 and 1, respectively. The particle separation
is constant and the particle mass difference is 1:64.

respectively. We set P = 2.5 and γ = 5/3. The high and
low density regions had the initial velocities of vx,h = 0.5
and vx,l = −0.5 in the x direction, respectively.

We have used Nnb = 32 ± 2 as the neighbor num-
ber. This value might seem a bit large, but we found
it guarantees the good sampling of the particles in the
low-density region at the interface. When we used
Nnb = 16 ± 2, the variation of the pressure at the in-
terface becomes too large. For the artificial viscosity, we
used α = 1 with the Balsara switch.

We added a small velocity perturbation to the particles

near the interfaces, following Price (2008). The velocity
perturbation in the y direction is as follows:

∆vy =
{

A sin[−2π(x + 0.5)/λ], |y − 0.25| < 0.025
A sin[2π(x + 0.5)/λ], |y − 0.75| < 0.025,

(60)
where λ = 1/6 and A = 0.025.

The time-scale of the growth of the Kelvin-Helmholtz
instability is

τkh =
λ(ρh + ρl)√

ρhρl|vx,h − vx,l|
. (61)

For our test setup, τkh = 0.35. We followed the evolution
up to t = 8τkh.

The results are shown in figure 7. The difference be-
tween two results is clear. In the run with the stan-
dard SPH, perturbations grow till t = τkh, but the un-
physical surface tension inhibited the growth of roll-like
structures. The stretched high-density fluids break apart
(t = 4τkh) and form blobs (t = 8τkh). This evolution is
completely different from those obtained by Euler codes
(e.g., Agertz et al. 2007). On the other hand, our new
SPH shows a very good result which is comparable to
those with Euler codes and with SPH with the Ritchie &
Thomas (2001) equation of motion or the artificial con-
ductivity (see Price 2008).
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Fig. 7.— The density maps from the two dimensional shear flow test at t = 1, 2, 4 and 8 τkh. The upper panels show the results of SSPH,
while the bottom panels show those of our SPH. The color code of the density is given at the bottom.

Figure 8 shows the cross section of the pressure distri-
bution along the y-axis. We can see that a very large
pressure jump exists around the contact interfaces, in
the case of the standard SPH. The surface tension at the
interface of the two fluids prevents the normal growth
of the Kelvin-Helmholtz instability. On the other hand,
there is no such jump in the case of our SPH. Since the
pressure and particle distribution is well-behaved at the
interface, the growth of the Kelvin-Helmholtz instability
is not suppressed.

4.5. Rayleigh-Taylor Instability Tests
Abel (2011) demonstrated that the standard SPH can-

not follow the development of the Rayleigh-Taylor insta-
bility correctly. We show the result with our SPH as well
as that with the standard SPH.

The initial setup is as follows. We prepared the two
dimensional computational domain of 0 ≤ x < 1 and
0 ≤ y < 1. We placed two fluids separated at y = 0.5.
The density just above (below) the interface was set to
ρh ≡ 2 (ρl ≡ 1). These two fluids were initially in the
hydrostatic equilibrium. Further, we assumed that each
fluid was initially isoentropic. The density distributions
of these fluids in the vertical direction are given by

ρ =

ρl

[
1 + γ−1

γ
ρlg(y−0.5)

P0

] 1
γ−1

y < 0.5,

ρh

[
1 + γ−1

γ
ρhg(y−0.5)

P0

] 1
γ−1

y ≥ 0.5,
(62)

where g = −0.5 is the gravitational constant, P0 = 10/7
is the value of pressure at the interface, and γ = 1.4. The
initial density and entropy profiles are shown in figure 9.
To ensure the initial density distribution given by Eq. 62,
we first placed equal-mass particles on the regular grid
with the separation of 1/512. Then, we adjusted the
vertical separation of each particle set having the same y

to reproduce the density distribution. The particle mass
was set to 5.7×10−6 and the total number of particles was
247296. The periodic boundary condition was imposed
on the x direction. Particles with y < 0.1 and y > 0.9
were fixed at the initial positions and they were not allow
to change their internal energy.

The velocity perturbation in the vertical direction was
added as the seed of the instabilities. We carried out
runs with two kinds of the seed. For the first test, we
added the velocity perturbation to particles in the range
of 0.3 < y < 0.7, and the form of the perturbation is
∆vy(x, y) = δvy[1+cos(4πx)]{1+cos[5π(y−0.5)]}. (63)

We set δvy = 0.025. For the second test, we added the
velocity perturbation of the form:

∆vy(x, y) =
40∑

j=20

aj
nj

kj
cos(kjx) exp(−0.05kj |y − 0.5|),

(64)
and

n2
j = kj |g|

(
ρh − ρl

ρh + ρl

)
, (65)

where nj is the linear growth rate of the Rayleigh-Taylor
instability, and kj = jπ/L(≡ 1) is the wave number of
the perturbation. The amplitude of each mode, aj , was
drawn from a Gaussian distribution with the variance
of unity at random. This initial velocity perturbation is
based on Youngs (1984) with slight modifications. Veloc-
ities of the particles outside the perturbed region was set
to zero. We call these two tests single-mode and multi-
mode tests, respectively.

In figure 10, the growth of the Rayleigh-Taylor insta-
bility in the case of the single-mode test is shown. The
Rayleigh-Taylor instability develops in calculations with
both of the standard SPH and our SPH, but the struc-
tures of them are quite different. The unphysical surface
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Fig. 8.— Pressure of each particle along the y direction at t = 0.4 τkh. The left panel shows the result of SSPH, whereas the right panel
shows that of our SPH. Particles initially in the high- (low-) density region are expressed with red (blue) points.

Fig. 9.— Initial distributions of density and entropy in the
vertical direction. Solid and dotted curves indicate density and
entropy, respectively.

tension of the standard SPH again prevents the develop-
ment of the fine structures on the surface of the Rayleigh-
Taylor fingers. Thus, the result looks quite different from
those obtained with Euler schemes. On the other hand,
in the calculation with our SPH, the overall evolution of
the Rayleigh-Taylor instability in our SPH shows excel-
lent agreement with those with Euler schemes and the
moving mesh scheme (see Springel 2010a).

Figure 11 shows the growth of the Rayleigh-Taylor
instability with the multi-mode perturbations with the
standard SPH and our new SPH. The global phase mix-
ing of fluids can be seen in the result with our SPH. On
the other hand, due to the unphysical surface tension, the
mixing is significantly suppressed in that of the standard
SPH. The distribution of two fluids looks like a mixture
of oil and water.

4.6. Blob Tests

As the final test, we performed the blob test proposed
by Agertz et al. (2007). This test incorporates both the
Kelvin-Helmholtz and Rayleigh-Taylor instabilities.

We used Read’s initial condition of the blob test (Read
et al. 2010; Read & Hayfield 2011) 2. The computational
domain was 0 ≤ x < 2000 kpc, 0 ≤ y < 2000 kpc, and
0 ≤ z < 6000 kpc, and the periodic boundary condition
was imposed. A cold cloud of the density ρc = 3.13 ×
10−7 in the mass unit of 2.3×105M�and the length unit
of 1 kpc and temperature Tc = 106K was centered at
(x, y, z) = (1000 kpc, 1000 kpc, 2000 kpc). The radius
of this cloud was 197 kpc. This cloud was embedded in
the diffuse ambient gas of which density and temperature
were ρa = 3.13×10−8 and Ta = 107 K, respectively. The
ambient gas had the velocity of vz = 1000 kms−1. Thus,
the Mach number of the flow to the cloud was 2.7. The
total number of particle for the system is 4643283. We
integrated the system up to t = 5τkh, where τkh = 2 Gyr
is the typical growth time-scale of the Kelvin-Helmholtz
instability in this test (Agertz et al. 2007).

Figure 12 shows the snapshots of the cloud core. The
upper and lower panels are the results with the stan-
dard SPH and our SPH, respectively. Their evolutions
were quite different. The blob simulated with the stan-
dard SPH retained the single cloud structure until the
late stage of the simulation. This behavior is consistent
with those with the standard SPH shown in Agertz et al.
(2007). In contrast, the blob surface was disrupted in
the run with our SPH, due to the growth of the insta-
bilities on the surface. The blob fragmented into several
peaces and mixed eventually with the ambient gas. This
behavior is similar to those obtained by Euler codes.

The evolution of the blob mass is shown in figure 13.
Here we show the mass of gas with ρ > 0.64 ρc and
T < 0.9 Ta, following Agertz et al. (2007). At t = 2.5 τkh,
the blob mass in the run of our SPH became ∼ 10 % of
the initial mass. This result is consistent with the results
of the Euler codes (see figure 6 in Agertz et al. 2007).
The evolution of the blob mass in the standard SPH was

2 We obtained the initial condition from the following URL:
http://www-theorie.physik.uzh.ch/astrosim/code/
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Fig. 10.— The density maps of the two dimensional Rayleigh-Taylor instability tests at t = 0.5, 3, 4 and 5. The upper panels show the
results of SSPH, while the bottom panels show those of our SPH. The color code of the density is given at the bottom.

much slower compared to that in our SPH.

5. SUMMARY AND DISCUSSION

In this paper, we described an alternative formulation
of SPH in which the energy density is used as the basis of
the smoothing instead of the mass density. In our formu-
lation, the mass of particles is not used in the evaluation
of the right-hand sides of the energy equation and the
equation of motion. As a result, the large error of force
estimate at the contact discontinuity, which is unavoid-
able with the standard SPH, disappears completely in
our SPH. Not surprisingly, our SPH can handle contact
discontinuities and the Kelvin-Helmholtz and Rayleigh-
Taylor instabilities without difficulty. The behavior of
the shock in our new SPH is essentially the same as
that in the standard SPH. Since the equations used in
our SPH are almost identical to those of in the stan-
dard SPH except that energy density is used in place of
mass density ρ. Modification of existing SPH code to use
our scheme is simple and straightforward. In particular,
there is no increase in the calculation cost. Equations
which are not derived in this paper, such as the diffusion
equation (Brookshaw 1985), can be derived easily.

Price (2008) improved the treatment of the Kelvin-
Helmholtz instability of the standard SPH, by applying
artificial conductivity at the contact discontinuity. Un-

like the artificial viscosity, artificial conductivity intro-
duces the dissipation not in the original set of equation.
Our SPH does not need such additional dissipation, and
thus the contact discontinuity is kept sharp.

One might think our result contradicts with the re-
quirement that all quantities in SPH must be smooth
(Monaghan 1997). However, it is obvious that in our
SPH, all quantities in the right-hand side of the equa-
tions are smooth, since the only discontinuous quantity
is the density and it does not appear in the right-hand
sides. Thus, our results does not contradict with Mon-
aghan’s requirement.

In this paper,we discuss the treatment of ideal gas only.
We are currently working on the extension to non-ideal
fluid, and the result will be given in the forthcoming
paper.

Some of the numerical tests were carried out on the
Cray XT4 system in the Center for Computational As-
trophysics at the National Astronomical Observatory of
Japan. This work is supported by HPCI Strategic Pro-
gram Field 5 ‘The origin of matter and the universe’ and
Grant-in-Aid for Scientific Research (21244020) of Japan
Society for the Promotion of Science, Ministry of Educa-
tion, Culture, Sports, Science and Technology, Japan.
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Fig. 11.— The same as figure 11, but for the multi-mode perturbations.
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Fig. 12.— The density maps at t = 0.25, 1.0, 1.75 and 2.5 τkh. The upper and lower panels show the results with SSPH and our SPH,
respectively. The color code of the density is given at the bottom.

Fig. 13.— The evolution of the blob mass up to t = 5 τkh.


