The Final Stage of Terrestrial Planet Formation

Eiichiro Kokubo

National Astronomical Observatory of Japan

Hidenori Genda

Tokyo Institute of Technology

Terrestrial Planet Formation

Act 1 Dust to planetesimals (gravitational instability/binary coagulation)

- Act 2 Planetesimals to protoplanets (runaway-oligarchic growth)
- Act 3 Protoplanets to terrestrial planets (giant impacts)

Terrestrial Planet Formation

Act 1 Dust to planetesimals (gravitational instability/binary coagulation)
Act 2 Planetesimals to protoplanets (runaway-oligarchic growth)
Act 3 Protoplanets to terrestrial planets (giant impacts)

Simulation of Giant Impact Stage

An Unsolved Problem

High e and i of Planets

N-body simulations

• $e, i \simeq 0.1$

(e.g., Chambers & Wetherill 1998; Agnor+ 1999; Kokubo+ 2006)

Solar system

• Venus and Earth: $e, i \simeq 0.01$

An Unsolved Problem

High e and i of Planets

N-body simulations

• $e, i \simeq 0.1$

(e.g., Chambers & Wetherill 1998; Agnor+ 1999; Kokubo+ 2006)

Solar system

• Venus and Earth: $e, i \simeq 0.01$

What is missing?

Recent Progress

Collision Experiments (SPH Simulations)

- Accretion condition
- Collisional debris production

(Genda, Kokubo & Ida 2011)

Accretion Experiments (*N*-Body Simulations)

- 50% of collisions are not accretionary but hit-and-run
- Growth timescale: $\simeq 10^8$ yr
- Collisions take place locally around a planet

(Kokubo & Genda 2010)

Location and Mass of Collisions

 \blacksquare : accretionary, \Box : hit-and-run, \bigcirc : planets

Recent Progress

Collision Experiments (SPH Simulations)

- Accretion condition
- Collisional debris production

(Genda, Kokubo & Ida 2011)

Accretion Experiments (*N*-Body Simulations)

- 50% of collisions are not accretionary but hit-and-run
- Growth timescale: $\simeq 10^8$ yr
- Collisions take place locally around a planet

(Kokubo & Genda 2010)

Recent Progress

Collision Experiments (SPH Simulations)

- Accretion condition
- Collisional debris production

(Genda, Kokubo & Ida 2011)

Accretion Experiments (*N*-Body Simulations)

- 50% of collisions are not accretionary but hit-and-run
- Growth timescale: $\simeq 10^8$ yr
- Collisions take place locally around a planet

(Kokubo & Genda 2010)

10% of the total mass goes to collisional debris!

The final stage: planet-debris interaction?

N-Body Simulation

Model

- planet: uniform sphere
- disk: gas-free
- collision: realistic accretion condition (Genda+ 2011)

Integration Method

- modified Hermite integrator for planetary dynamics (Kokubo & Makino 2004)
- phantom-GRAPE (Nitadori+ 2006)

Initial Condition

	n	$M(M_{\oplus})$	<i>a</i> (AU)	e	i
planet	1	0.8-0.95	1	0.1	0
debris	10-40	0.05-0.2	0.75-1.25	0.1	0.1

An Example Run

Mass and Eccentricity Evolution

Eccentricity Vector Evolution

perturbation circle (secular interaction) + *e*-damping

Dynamical Friction

Chandrasekhar's Formula

A large particle with M and v_M in a swarm of small particles with m and v_m

$$\frac{1}{v_M} \frac{\mathrm{d}v_M}{\mathrm{d}t} \sim \frac{G^2 M m n_m}{v_M^3}$$
$$(v_M > v_m)$$

Application to a Particle Disk

$$\frac{1}{e_M} \frac{\mathrm{d}e_M}{\mathrm{d}t} \sim \frac{G^2 M m n_{\mathrm{s},m}}{2i_m a e_M^3 a^3 \Omega^3} \sim \frac{G^2 M \Sigma}{e_M^4 a^4 \Omega^3}$$
$$(\Sigma = m n_{\mathrm{s},m}, v_M \simeq e_M a \Omega, n_m \simeq n_{\mathrm{s},m}/2a i_M, i_m < i_M)$$
$$t_{\mathrm{DF}} \equiv \frac{e_M}{\mathrm{d}e_M/\mathrm{d}t} \sim \frac{e_M^4 a^4 \Omega^3}{G^2 M \Sigma}$$

DF from Collisional Debris

Planet Eccentricity

- model: equal-mass debris $m = M_{\rm d}/n$ ($M_{\rm d}$: total debris mass, n: number)
- assumption: $M_{\rm d} \gg M$, $n \gg 1$ (M: planet mass)
- energy equiparation (e: planet eccentricity, e_d : debris eccentricity)

$$Me^2 = me_{\rm d}^2 \to e = \left(\frac{m}{M}\right)^{1/2} e_{\rm d} = \left(\frac{M_{\rm d}}{M}\right)^{1/2} n^{-1/2} e_{\rm d}$$

e-Damping Timescale

- assumption: $Me^2 \gg me_d^2$, $n \gg 1$
- timescale (Δa : debris ring width, a: semimajor axis)

$$t_{\rm DF} \sim 10^4 \left(\frac{M}{M_{\oplus}}\right)^{-1} \left(\frac{e}{0.1}\right)^4 \left(\frac{M_{\rm d}}{0.1M_{\oplus}}\right)^{-1} \left(\frac{\Delta a}{0.5 \rm AU}\right) \left(\frac{a}{1 \rm AU}\right)^{1/2} \rm yr$$

Dependence on *n*

 $t_{
m DF} \simeq$ const., fluctuation $\propto n^{-1/2}$

Dependence on Md

Summary

Collisional Debris Production by Giant Impacts

- debris mass: $M_{\rm d} \simeq 0.1 M_{\rm sys}$
- debris distribution: locally around a planet orbit

"Dynamical Friction" on a Planet from Debris

- $M_{\rm d} \gtrsim 0.1 M_{\oplus}$, $n \gtrsim 20 \Rightarrow e : 0.1 \rightarrow 0.01$
- $t_{\rm DF} \sim 10^8 \, {\rm yr}$

Planetary orbits are inevitably circularized by debris after giant impacts!?

Future (Ongoing) Works

- N-body simulation with debris production
- Observational possibility of collisional debris