A Planetesimal Pas de Deux or the Clash of the Titans: A Model for Collisions in Planet Formation

Zoë Malka Leinhardt School of Physics, University of Bristol

Students: Stefan Lines & Jack Dobinson HPC Intern: Michael Boulton

Exoplanets

Planet Formation

- Number of observed planets increases daily (919 on 13.08.13), drives planet formation theory
- Observations provide snapshots of protoplanetary disks or stable planetary systems. Little info. to connect two stages. Leaves numerical sims. But diversity still a surprise.

Bluecrystal Supercomputer UoB

HR 8799, Marois et al. (2010)

HH 30, Watson (2000)

Large Scale Simulations of Planetary Systems

Wednesday, 14 August 13

Planet Formation Cartoon

This is the process we would like to understand. It is effectively invisible.

Phases of Planet Formation

Time???Large Scale Simulations of Planetary Systems

~ 5-10 Myr

Collisions within a Solar System

Planetesimal Collisions

Giant Impacts

Family Formation

- Collisions are fundamental to the evolution of solar systems: planetesimal evolution, giant impact phase, late evolution
- Many phenomena require that we understand collisions and have a model to describe them
- Previous collision models cannot constrain the models: simplistic (assume a simple collision outcome), slow (directly model the collision), apply to a narrow regime of phase space

Possible Collision Regimes

Wednesday, 14 August 13

Old Collision Model

Benz & Asphaug 1999

Model applies to M_p << M_{targ}, narrow range of V_i 3-5 km/s Model was used well outside of range

Empirical Scaling Laws

Empirical Scaling Laws

Disruption & Super-catastrophic Regime

Collision Model for Planet Formation

Large Scale Simulations of Planetary Systems

Outcome Regimes

Outcome Regimes

Summary of Collision Model

- New collision model provides largest remnant, size & velocity distributions for collisions of any mass ratio, impact parameter, impact speed.
- Collision model from Benz & Asphaug '99 applies to a very limited range of collision parameters. Collisions between planetesimals, asteroids, protoplanets have a broad range of impact speeds, mass ratios, and impact angles.
- Old collision model would have over predicted the amount of energy needed to disrupt a planetesimal in a equal mass collision. Doesn't necessarily mean that it is even harder to grow (considerable feedback from additional debris). But the process is more complex. New collision model increases possible outcomes and thus diversity.

Evidence of Giant Impacts in The Solar System

Mercury: Large Core

Venus: Retrograde Rotation

Moon: Formation

Mars: Crustal Dichotomy

Large Scale Simulations of Planetary Systems

Pluto: Satellite System

Haumea: Spin and Moons

Impact of New Collision Model?

- What kind of impacts really occur in planet formation?
- Retrospective analysis of impacts between planetary embryos from published N-body simulations of giant impact stage from Raymond et al. (2009) & O'Brien et al. (2006)
- Original simulations used 25 90 embryos and 1000 planetesimals at beginning of last stage of growth - the stochastic giant impact phase
- Impacts between embryos are "giant" impacts all impacts originally resulted in a perfect merging event (both for embryo-embryo and embryo-planetesimal)

Original Raymond et al. 2009

Implications of Collision Model from Individual Collisions

		o 1			Grou	ıp 2			
	O'Br	al. 2006		Rayr	nond e	et al. 2009			
	15 Large F	lanets	from 8 Si	ms.	52 Large Planets from 40 Sims.				
	0.74	-1.58	$M_{\rm Earth}$		0.70	0 - 1.4	$5M_{\rm Earth}$		
	Planetesimal Giant				Planetesi	mal	Giant	-	
Collision outcome	N = 1140	%	N = 67	%	N = 3142	%	N = 544	%	
Super-catastrophic	0	0	1	1	0	0	0	0	
Partial erosion	8	< 1	1	1	61	2	3	< 1	
Partial accretion	820	72	18	27	2180	69	213	39	
Perfect merging	0	0	0	0	18	< 1	4	< 1	
Graze-and-merge	43	4	26	39	85	3	173	32	
Hit-and-run	269	24	21	31	798	25	151	28	
Special cases									
H&R with proj. erosion	265	23	3	4	778	25	75	14	
$5-10\%$ increase in $f_{\rm core}$	0	0	5	7	0	0	132	24	
$> 10\%$ increase in $f_{\rm core}$	0	0	6	9	2	< 1	90	17	

- Found giant impacts are evenly split between accretion, graze-andmerge, and hit-and-run events. Few true perfect merging events.
- Individual giant collisions can change core to mantle ratio by > 10%

Testing the Cumulative Effect of the Collision Model

To explore the cumulative effects of more realistic collision model on the growth of an individual planet we developed a Monte Carlo technique using the impact parameter distributions from the late stage N-body simulations

1. Choose an initial mass from N-body distribution

2. Choose number of giant impacts from N-body distribution

3. For each giant impact choose impact parameters from N-body distributions

4. Choose mass contribution from planetesimals from N-body distributions

Implications of Collision Model Model from Multiple Collisions

		o A	Group B					
	No hit	un return	With h	it-and	-run return			
	13 Planet	$-1.26M_{\rm Ear}$	30 Planet	ts 0.7 -	$-1.53M_{\mathrm{Eart}}$	th		
	200 Plan	ets	$\geq 0.7 M_{\rm Ea}$	arth	200 Plan	ets	$\geq 0.7 M_{\rm Earth}$	
Collision outcome	N = 1455	%	N = 162	%	N = 1809	%	N = 508	%
Super-catastrophic	3	< 1	0	0	5	< 1	0	0
Partial erosion	16	1	2	1	28	2	9	2
Partial accretion	487	33	57	35	617	34	168	33
Perfect merging	105	7	14	9	103	6	31	6
Graze-and-merge	571	39	48	29	668	37	142	28
Hit-and-run	273	19	28	17	388	21	128	25
Special cases								
H&R with proj. erosion	117	8	14	9	182	10	71	14
$5-10\%$ increase in final $f_{\rm core}$	39/200	20	2/13	15	47/200	24	7/30	23
$> 10\%$ increase in final $f_{\rm core}$	65/200	33	9/13	69	79/200	40	18/30	60

- Fewer planets reached Earth mass and of those that did a majority were enriched in core metals and deficient in mantle
- Fragmentation was significant partial accretion and hit-andrun events of the projectile - accretion of iron core - ejection of mantle material from both projectile and target

Conclusions

- Outcomes of giant impacts span all possible collision regimes including hit-and-run, accretion, erosion, and catastrophic disruption
- Fragmentation during giant impacts is also significant the majority of the ejected material is mantle from partial accretion events if ejected material is not totally re-accreted giant impacts can create planets depleted in volatiles and mantle (including water and atmosphere) compared to initial embryos
- Our new model was only applied retrospectively to the last stage - we predict a significant change in outcome distribution but will probably be more significant if model is included from the beginning

EDA-CM Collision Outcomes (LS12 collision model in PKDGRAV)

Merge

Bounce

Work in Progress: Circumbinary Planet Formation

- Several circumbinary planetary systems: Kepler 16, 34, 35, 38, 47, PH1, disagreement in community about where planets could have formed (Paardekooper, Leinhardt et al. 2012 vs. Meschiari 2012)
- Gravitational perturbations from the second star introduce high impact velocities close to the binary but the effect of the second star drops off quickly with distance so need a collision model that can accurately model both scenarios (Lines, Leinhardt, et al. in prep.)

Kepler 34 (Equal-Mass Stars, a = 0.2, e = 0.5)

K34 Eccentricity Evolution

K34 Collision Outcomes

Large Scale Simulations of Planetary Systems

Wednesday, 14 August 13

K34 Conclusions

- In situ growth of K34b seems unlikely ...
- High impact velocities up to 5 km/s
- Erosive collisions dominate for a < 1.1 AU
- No evidence for new type of runaway growth in inner erosive region no dust run away growth
- To Do:
 - a) Compare with single star simulation including edacm
 - b) Include gravity of gas disk (non-axisymmetric)
 - c) Planetesimal generation (Paardekooper & Leinhardt, 2010)?
 - d) Do all of the Kepler circumbinary planets similar?

Whats next?

UoB High Performance Machines

Platform	Total nodes	Cores per node	Processor	Memory per node	Memory per core	Network
Cray XE6	16	32 cores	2x AMD Opteron 6272 @ 2.1GHz	32 GB	1GB	Cray Gemini
Intel test machine	1	16 cores	2x Intel E5 2687W @ 3.1GHz	32 GB	2GB	N/A
Bluecrystal Phase 2	416	8 cores	2x Intel E5642 @ 2.8GHz	8 GB	1GB	QLogic Infinipath
Bluecrystal Phase 3	-	16 cores	2x Intel E5 2670 @ 2.6GHz	128 GB	8GB	-

Currently in testing phase - will be available Oct/Nov 2013

Biggest Problem - Memory

- Never a problem before but for $N = 10^9$ need a few 10⁶ particles/core
- Hierarchical tree itself takes up considerable space (our version of PKDGRAV has two one for gravity, one for collisions)
- Test: Changing bucket size, $N = 1.6 \times 10^6$, inelastic collisions, 100 steps

Bucket size	Time taken	Nodes in tree (per process)	Tree memory allocated (MB per process)	% of total	Relative tree memory use	Relative speed
8	577	32768	14.75	56.3%	100%	100%
32	587	8192	3.68	14.5%	25.7%	98.2%
64	660	4096	1.84	7.02%	12.5%	87.5%
128	875	2048	0.9	3.44%	6.1%	65.9%
256	1251	1024	0.46	1.78%	3.1%	46.1%

Other Problems

- Input/Output generating and reading files
- Data processing & storage moving the data, visualising the data, storing the data
- Time to complete simulation simulation will be more than 1000 times slower:
 - a) PKDGRAV scales as NlogN but collision rate should increase a lot too and collision search is expensive
 - b) Can PKDGRAV be optimised further?
 (only useful if efficiency is increased by ~10s%)
- Generating an appropriate initial condition needed 10s of dynamical times to get to steady state for N=10⁶