Hot Debris Disks and Giant Impacts

Hidenori Genda (Titech/ELSI)

H. Kobayashi (Nagoya U.), H. Kawahara (U. Tokyo), T. Matsuo (Kyoto U.), T. Kotani (NAOJ), N. Murakami (Hokkaido U.), Y. Fujii (ELSI), E. Kokubo (NAOJ)

Obs. of Hot Debris Disk

Recently the linkage between infrared excess of the stars (10⁷-10⁸yr) and terrestrial planet formation has been discussed. *Weinberger et al. 2011, Jackson & Wyatt 2012, Melis et al. 2012, etc.*

Kokubo & Ida (1996,1998), Ogihara & Ida (2009), Kokubo & Genda (2012), etc.

Planet Formation Theory

Qbs. of planet formation!

Computer Simulations!

This Study

- How much debris is produced by a giant impact?
- Can we observe infrared excess throughout the giant impact stage?

Method

surface density of debris disk, size distribution of debris disk

Evolution of Debris Disk

Infrared Excess (24µm)

Obs. of Scattered Light

Can we observe the structure of a hot debris disk by using future telescope and instrument?

TMT (2021-) (Thirty Meter Telescope)

Spec of TMT&SEIT TMT(2021~)

contrast : 10^{-8.5}(H) 10⁻⁸(J), 10^{-7.5}(Y)

Spatial resolution, IWA : ~ 10 mas

Target object

- 10pc \rightarrow 0.1AU \rightarrow fine structure of debris disk $30pc \rightarrow 0.3AU \rightarrow global structure of debris disk$ 100pc \rightarrow 1.0AU \rightarrow with or w/o debris disk

Summary

- ► Significant amount of debris (~ 0.4M_⊕) is ejected throughout the giant impact stege.
- Hot debris disk lasts for ~ 10⁸ yr, and can be observed as infrared excess.
- Using future telescope (TMT) and instrument (SEIT), we will be able to observe the structure of hot debris disk.